In mathematics, the p-adic gamma function Γp is a function of a p-adic variable analogous to the gamma function. It was first explicitly defined by Morita (1975), though Boyarsky (1980) pointed out that Dwork (1964) implicitly used the same function. Diamond (1977) defined a p-adic analog Gp of log Γ. Overholtzer (1952) had previously given a definition of a different p-adic analogue of the gamma function, but his function does not have satisfactory properties and is not used much.

Definition

The p-adic gamma function is the unique continuous function of a p-adic integer x (with values in Z p {\displaystyle \mathbb {Z} _{p}} ) such that

Γ p ( x ) = ( 1 ) x 0 < i < x ,   p i i {\displaystyle \Gamma _{p}(x)=(-1)^{x}\prod _{0

for positive integers x, where the product is restricted to integers i not divisible by p. As the positive integers are dense with respect to the p-adic topology in Z p {\displaystyle \mathbb {Z} _{p}} , Γ p ( x ) {\displaystyle \Gamma _{p}(x)} can be extended uniquely to the whole of Z p {\displaystyle \mathbb {Z} _{p}} . Here Z p {\displaystyle \mathbb {Z} _{p}} is the ring of p-adic integers. It follows from the definition that the values of Γ p ( Z ) {\displaystyle \Gamma _{p}(\mathbb {Z} )} are invertible in Z p {\displaystyle \mathbb {Z} _{p}} ; this is because these values are products of integers not divisible by p, and this property holds after the continuous extension to Z p {\displaystyle \mathbb {Z} _{p}} . Thus Γ p : Z p Z p × {\displaystyle \Gamma _{p}:\mathbb {Z} _{p}\to \mathbb {Z} _{p}^{\times }} . Here Z p × {\displaystyle \mathbb {Z} _{p}^{\times }} is the set of invertible p-adic integers.

Basic properties of the p-adic gamma function

The classical gamma function satisfies the functional equation Γ ( x 1 ) = x Γ ( x ) {\displaystyle \Gamma (x 1)=x\Gamma (x)} for any x C Z 0 {\displaystyle x\in \mathbb {C} \setminus \mathbb {Z} _{\leq 0}} . This has an analogue with respect to the Morita gamma function:

Γ p ( x 1 ) Γ p ( x ) = { x , if  x Z p × 1 , if  x p Z p . {\displaystyle {\frac {\Gamma _{p}(x 1)}{\Gamma _{p}(x)}}={\begin{cases}-x,&{\mbox{if }}x\in \mathbb {Z} _{p}^{\times }\\-1,&{\mbox{if }}x\in p\mathbb {Z} _{p}.\end{cases}}}

The Euler's reflection formula Γ ( x ) Γ ( 1 x ) = π sin ( π x ) {\displaystyle \Gamma (x)\Gamma (1-x)={\frac {\pi }{\sin {(\pi x)}}}} has its following simple counterpart in the p-adic case:

Γ p ( x ) Γ p ( 1 x ) = ( 1 ) x 0 , {\displaystyle \Gamma _{p}(x)\Gamma _{p}(1-x)=(-1)^{x_{0}},}

where x 0 {\displaystyle x_{0}} is the first digit in the p-adic expansion of x, unless x p Z p {\displaystyle x\in p\mathbb {Z} _{p}} , in which case x 0 = p {\displaystyle x_{0}=p} rather than 0.

Special values

Γ p ( 0 ) = 1 , {\displaystyle \Gamma _{p}(0)=1,}
Γ p ( 1 ) = 1 , {\displaystyle \Gamma _{p}(1)=-1,}
Γ p ( 2 ) = 1 , {\displaystyle \Gamma _{p}(2)=1,}
Γ p ( 3 ) = 2 , {\displaystyle \Gamma _{p}(3)=-2,}

and, in general,

Γ p ( n 1 ) = ( 1 ) n 1 n ! [ n / p ] ! p [ n / p ] ( n 2 ) . {\displaystyle \Gamma _{p}(n 1)={\frac {(-1)^{n 1}n!}{[n/p]!p^{[n/p]}}}\quad (n\geq 2).}

At x = 1 2 {\displaystyle x={\frac {1}{2}}} the Morita gamma function is related to the Legendre symbol ( a p ) {\displaystyle \left({\frac {a}{p}}\right)} :

Γ p ( 1 2 ) 2 = ( 1 p ) . {\displaystyle \Gamma _{p}\left({\frac {1}{2}}\right)^{2}=-\left({\frac {-1}{p}}\right).}

It can also be seen, that Γ p ( p n ) 1 ( mod p n ) , {\displaystyle \Gamma _{p}(p^{n})\equiv 1{\pmod {p^{n}}},} hence Γ p ( p n ) 1 {\displaystyle \Gamma _{p}(p^{n})\to 1} as n {\displaystyle n\to \infty } .: 369 

Other interesting special values come from the Gross–Koblitz formula, which was first proved by cohomological tools, and later was proved using more elementary methods. For example,

Γ 5 ( 1 4 ) 2 = 2 1 , {\displaystyle \Gamma _{5}\left({\frac {1}{4}}\right)^{2}=-2 {\sqrt {-1}},}
Γ 7 ( 1 3 ) 3 = 1 3 3 2 , {\displaystyle \Gamma _{7}\left({\frac {1}{3}}\right)^{3}={\frac {1-3{\sqrt {-3}}}{2}},}

where 1 Z 5 {\displaystyle {\sqrt {-1}}\in \mathbb {Z} _{5}} denotes the square root with first digit 3, and 3 Z 7 {\displaystyle {\sqrt {-3}}\in \mathbb {Z} _{7}} denotes the square root with first digit 2. (Such specifications must always be done if we talk about roots.)

Another example is

Γ 3 ( 1 8 ) Γ 3 ( 3 8 ) = ( 1 2 ) , {\displaystyle \Gamma _{3}\left({\frac {1}{8}}\right)\Gamma _{3}\left({\frac {3}{8}}\right)=-(1 {\sqrt {-2}}),}

where 2 {\displaystyle {\sqrt {-2}}} is the square root of 2 {\displaystyle -2} in Q 3 {\displaystyle \mathbb {Q} _{3}} congruent to 1 modulo 3.

p-adic Raabe formula

The Raabe-formula for the classical Gamma function says that

0 1 log Γ ( x t ) d t = 1 2 log ( 2 π ) x log x x . {\displaystyle \int _{0}^{1}\log \Gamma (x t)dt={\frac {1}{2}}\log(2\pi ) x\log x-x.}

This has an analogue for the Iwasawa logarithm of the Morita gamma function:

Z p log Γ p ( x t ) d t = ( x 1 ) ( log Γ p ) ( x ) x x p ( x Z p ) . {\displaystyle \int _{\mathbb {Z} _{p}}\log \Gamma _{p}(x t)dt=(x-1)(\log \Gamma _{p})'(x)-x \left\lceil {\frac {x}{p}}\right\rceil \quad (x\in \mathbb {Z} _{p}).}

The ceiling function to be understood as the p-adic limit lim n x n p {\displaystyle \lim _{n\to \infty }\left\lceil {\frac {x_{n}}{p}}\right\rceil } such that x n x {\displaystyle x_{n}\to x} through rational integers.

Mahler expansion

The Mahler expansion is similarly important for p-adic functions as the Taylor expansion in classical analysis. The Mahler expansion of the p-adic gamma function is the following:: 374 

Γ p ( x 1 ) = k = 0 a k ( x k ) , {\displaystyle \Gamma _{p}(x 1)=\sum _{k=0}^{\infty }a_{k}{\binom {x}{k}},}

where the sequence a k {\displaystyle a_{k}} is defined by the following identity:

k = 0 ( 1 ) k 1 a k x k k ! = 1 x p 1 x exp ( x x p p ) . {\displaystyle \sum _{k=0}^{\infty }(-1)^{k 1}a_{k}{\frac {x^{k}}{k!}}={\frac {1-x^{p}}{1-x}}\exp \left(x {\frac {x^{p}}{p}}\right).}

See also

  • Gross–Koblitz formula

References

  • Boyarsky, Maurizio (1980), "p-adic gamma functions and Dwork cohomology", Transactions of the American Mathematical Society, 257 (2): 359–369, doi:10.2307/1998301, ISSN 0002-9947, JSTOR 1998301, MR 0552263
  • Diamond, Jack (1977), "The p-adic log gamma function and p-adic Euler constants", Transactions of the American Mathematical Society, 233: 321–337, doi:10.2307/1997840, ISSN 0002-9947, JSTOR 1997840, MR 0498503
  • Diamond, Jack (1984), "p-adic gamma functions and their applications", in Chudnovsky, David V.; Chudnovsky, Gregory V.; Cohn, Henry; et al. (eds.), Number theory (New York, 1982), Lecture Notes in Math., vol. 1052, Berlin, New York: Springer-Verlag, pp. 168–175, doi:10.1007/BFb0071542, ISBN 978-3-540-12909-7, MR 0750664
  • Dwork, Bernard (1964), "On the zeta function of a hypersurface. II", Annals of Mathematics, Second Series, 80 (2): 227–299, doi:10.2307/1970392, ISSN 0003-486X, JSTOR 1970392, MR 0188215
  • Morita, Yasuo (1975), "A p-adic analogue of the Γ-function", Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics, 22 (2): 255–266, hdl:2261/6494, ISSN 0040-8980, MR 0424762
  • Overholtzer, Gordon (1952), "Sum functions in elementary p-adic analysis", American Journal of Mathematics, 74 (2): 332–346, doi:10.2307/2371998, ISSN 0002-9327, JSTOR 2371998, MR 0048493

padic Numbers, padic Analysis, and ZetaFunctions by Neal Koblitz

padic Function Analysis 1st Edition Jose M. Bayod Routledge Boo

(PDF) Multifarious correlations for padic gamma function and weighted

P adic number Alchetron, The Free Social Encyclopedia

(PDF) THE BOOLE POLYNOMIALS ASSOCIATED WITH THE pADIC GAMMA FUNCTION